

Richardson Dees Primary School

September 2019

Calculation Policy:

- Long term progression in calculations over the four operations: Addition, Subtraction, Multiplication and Division.
- Taken and adapted for Richardson Dees from The White Rose "Progression in Calculation" document.
- HTU or HTO. We interchange between both 'units' and 'ones' so that children feel comfortable using both phrases.

Addition

Objective and Strategies	Concrete	Pictorial	Abstract
Year 1 Combining two parts to make a whole: partwhole model			
Year 1 Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.

Objective and Strategies	Concrete	Pictorial	Abstract
Year 1 Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken away. $6-2=4$	Cross out drawn objects to show what has been taken away. $15-3=12$	$\begin{aligned} & 18-3=15 \\ & 8-2=6 \end{aligned}$
Year 1\&2 + Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track - Use number track first before number line. Start at the bigger number and count back the smaller number showing the jumps on the number line. (Needs to consistently be delivered across LKS2 as well) This can progress all the way to counting back using two 2 digit numbers.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

Now I can subtract my ones.

Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens.

Now I can take away eight tens and complete my subtraction

Show children how the concrete method links to the written method alongside your working. Cross out the

Moving forward the children use a more compact method.

This will lead to an understanding of subtracting any number including decimals.

	5	12		1	
	2	6	3	.	0
	2	6	.	5	
2	3	6	.	5	

Y 5 - same number of decimal places.

Y6 - wth different numbers of decimals places.

| | numbers when exchanging and show
 where we write our new amount.
 Also use dienes in Y3 \& Y4 | |
| :--- | :--- | :--- | :--- |

Multiplication

\begin{tabular}{|c|c|c|c|}
\hline Objective and Strategies \& Concrete \& Pictorial \& Abstract \\
\hline \begin{tabular}{l}
Year 1\&2 \\
Doubling
\end{tabular} \& \begin{tabular}{l}
Use practical activities to show how to double a number. \\
double 4 is 8
\[
4 \times 2=8
\] \\
numicon
\end{tabular} \& \begin{tabular}{l}
Draw pictures to show how to double a number. \\
Double 4 is 8

numicon pictures
\end{tabular} \& Partition a number and then double each part before recombining it back together.

\hline | Year 1+ |
| :--- |
| Counting in multiples | \& | Count in multiples supported by concrete objects in equal groups. |
| :--- |
| - Numicon |
| - Cuisenaire in Y2+ | \& Use a number line or pictures to continue support in counting in multiples. \& | Count in multiples of a number aloud. |
| :--- |
| Write sequences with multiples of numbers. $\begin{aligned} & 2,4,6,8,10 \\ & 5,10,15,20,25,30 \end{aligned}$ |

\hline
\end{tabular}

Year 2 \＆ 3 （some Y4） Repeated addition	Use different objects to add equal groups．	There are 3 plates．Each plate has 2 star biscuits on．How many biscuits are there？ 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures．
Year 2 \＆ 3 （reinforce in y4） Arrays－ showing commutative multiplication	Create arrays using counters／cubes to show multiplication sentences．	Draw arrays in different rotations to find commutative multiplication sentences． $\begin{aligned} & 0000^{4 \times 2=8} \\ & 0000^{2 \times 4-8} \\ & 00^{2 \times 4=8} \\ & 00^{2 \times 2=8} \\ & 00 \\ & 4 \times 2 \end{aligned}$ Link arrays to area of rectangles．	Use an array to write multiplication sentences and reinforce repeated addition． $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$
Year 3＋ Grid Method	13×4 Show the link with arrays to first introduce the grid method with counters	Children can represent the work they have done with place value counters in a way that they understand． They can draw the counters，using colours to show different amounts or just use circles in the different columns to show their thinking as shown below．	Start with multiplying by one digit numbers and showing the clear addition alongside the grid．

4 rows of 10 4 rows of 3

Move on to using Base 10 to move towards a more compact method (almost repeated addition).

4 rows of 13

Use base 10 - then, once secure, move on to place value counters to show how we are finding groups of a number.We are multiplying by 4 so we need 4 rows.

Calculations
4×126

Fill each row with 126.

Add up each column, starting with the ones making any exchanges needed.

Also construct with PV counters before trying this.

35×7

\times	30	5
7	210	35

$210+35=245$

Moving forward, multiply by a 2 digit number showing the different rows within the grid method.
18×13

Once secure, move into column multiplication.

			This moves to the more compact $\begin{array}{r} 1342 \\ \times \quad 18 \\ \hline 13420 \\ 10736 \\ \hline 24156 \\ \hline \end{array}$ method.

Division - In Y1 teach sharing and grouping alongside each other.

Objective and Strategies	Concrete	Pictorial	Abstract
Year 1 Sharing objects into groups $10 \div 2$ as sharing	An understanding of what division is. I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. $8 \div 2=4$	Share 9 buns between three people. $9 \div 3=3$
Year 1\&2 Division as grouping $10 \div 2$ as grouping (Developed over time as children progress up the school. Do this approach through times tables to develop an understanding in y1).	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use a number line to show jumps in groups. The number of jumps equals the number of groups.	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

		Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	
Year 2, 3 \& 4 Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rrr} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences. Also use multiplication triangles	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$ "Fact Families"

